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We expand the equations describing plane Poiseuille flow in Fourier series 
in the co-ordinates in the plane parallel to the bounding walls. There results 
an infinite system of equations for the amplitudes, which are functions of time 
and of the cross-stream co-ordinate. This system is drastically truncated and the 
resulting set of equations is solved accurately by a finite difference method. 
Three truncations are considered: (I) a single mode with dependence only on 
the downstream co-ordinate and time, (11) the mode of (I) plus its first harmonic, 
(111) a single three-dimensional mode. For all three cases, for a variety of initial 
conditions, the solutions evolve to a steady state as seen in a particular moving 
frame of reference. No runaways are encountered. 

For Reynolds numbers below a critical value (2707 in case 11), any initial 
disturbance to the parabolic profile dies away. For Reynolds numbers R and 
disturbance wavenumbers ct for which linear theory predicts instability, an 
initial disturbance of any amplitude gives a particular, steady, finite amplitude 
solution. For R greater than the critical value mentioned above, but outside 
the linear instability region, ‘subcritical instability’ occurs for wavenumbers in 
a given band. That is, if the energy E of the initial disturbance to the parabolic 
profile exceeds a certain threshold, a steady finite amplitude solution is achieved 
as in the linearly unstable case. There is also a second finite amplitude steady 
solution with E equal to the threshold value. This is the subcritical solution 
discussed by several others and it is always unstable. 

The loci of these steady finite amplitude solutions in R, a, E space are mapped 
out and their properties are outlined. The connexion between these solutions 
and previously discussed ones is briefly indicated and the question of their 
relevance to the development of observed instabilities is broached. 
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1. Introduction 
A striking aspect of the breakdown of laminar flow in channels and pipes 

is that it leads directly to irregular or even turbulent, motions. There is apparently 
no experimental evidence for the periodic nonlinear waves which would be 
analogues of the steady cellular motions seen a t  the onset of rotational (Taylor- 
Couette) or convective (Rayleigh-BBnard) instability, even though such analytic 
solutions do seem to exist for channel flow. The case of shear instability of channel 
flow is therefore a good example for making comparisons between t*hese different 
kinds of transition to turbulence, especially since the linear theory is well under- 
stood (Lin 1955; Thomas 1953). There is also a considerable body of work 
(Stuart 1971) discussing nonlinear solutions to  the equations of channel flow 
in which the velocity is decomposed into a mean part plus a nonlinear disturbance. 
The case where the disturbance flow has small amplitude has been treated ex- 
tensively and it has been known for some time (Meksyn & Stuart 1951) that 
such solutions exist a t  Reynolds numbers below that a t  which linear theory 
first predicts instability of the Poiseuille profile. I n  these solutions, the dis- 
turbance flows are periodic (in time) in laboratory co-ordinates, but there exist 
Galilean frames in which they are steady. 

I n  a plot of the square A 2  of the amplitude of the disturbance flow versus 
Reynolds number R every point on the R axis is a solution. The finite amplitude 
solutions bifurcate from the R axis in a direction of decreasing R and increasing A2. 
The work of Meksyn & Stuart (1951) and of Grohne (1969) suggest that the finite 
amplitude branch of solutions goes down to some lower value of R and then 
turns parallel to the A2 axis. These solutions are said to be subcritical (i.e. they 
occur a t  an R below the critical R of linear theory) and are manifestations of 
what is known as finite amplitude instability, though we prefer to call it meta- 
stability. Such behaviour is familiar in convection and Veronis (1966, 1968) 
has given a number of examples. It seems reasonable to speculate that, as in 
these examples of convection, the finite amplitude solution branch turns back 
towards higher R and A2,  so that in the region of metastability there are two 
‘steady’ solutions. The analogy with the convective case goes even further with 
the demonstration by Chen & Joseph (1973) that the small amplitude nonlinear 
shear solutions are unstable just as in the convective cases studied by Busse 
(1967). However in the convective problem some of the larger amplitude solu- 
tions do seem to be stable and they (or something very like them) are seen in 
experiments. If the larger amplitude solutions exist equally in the case of channel 
flow it would be quite interesting to know why they are not seen. This question 
has motivated the present attempt to calculate such solutions and to derive 
some information about their stability. The techniques we use are related to 
those of previous work and before describing these we should report briefly on 
this background. Details are not needed since Stuart (1971) has given an ex- 
tensive review of this work, while Monin & Yaglom (197 1 )  provide a further 
excellent discussion of metastability in both channel flows and convection. 

The principal approach to finite amplitude solutions is that of Stuart (1960) 
and Watson (1960). The disturbance flow is developed in Fourier series in the 
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downstream co-ordinate x and the series are truncated, typically, after t w o  terms 
(fundamental and first harmonic). The equations resulting from these expansions 
are then developed in amplitude, and if the first nonlinear corrections are re- 
tained, the amplitude is given by 

aA2/at = k, A2 + k, A*, (1.1) 

where k, and k ,  are constants. This equation was postulated by Landau ( 1944) 
to describe his physical picture of the transition to turbulence. Stuart’s derivation 
provides explicit expressions for k, and k,, which have been evaluated by 
& Shkoller ( m y ) ,  while an alternative, but related, development of the  theory 
has been provided by Reynolds & Potter (1967). The values of k2 turn out  t o  be 
such that only in some parts of the linear instability region (where k, is of course 
positive) does (1.1) predict a stable nonlinear disturbance flow. Moreover, for 
all Reynolds numbers below the critical value for linear instability (kl 0 1 ,  
Stuart’s formula gives positive k,. This predicts that disturbances with amplitude 
above a certain threshold will grow, seemingly without bound. 

Other attempts to map out the nonlinear solutions of channel flow have taken 
Fourier or eigenfunction expansions as their starting points. Pekeris & Shkoller 
(1969a, 1971) used a three-mode Fourier representation in the doxrnstream 
ordinate and, following a suggestion by Eckhaus (1965, p. gs), introduced 
a truncated Orr-Sommerfeld eigenfunction representation in the cross-stream 
Go-ordinate, For disturbances of sufficiently large initial amplitude, their solu- 
tions grew without bound, not only in the Meksyn-Stuart region Ofmetastability, 
but even a t  Reynolds numbers below which the parabolic profile showed no 
metastability according to Grohne or Meksyn & Stuart. This seems surprising, 
even in view of the prediction from (1. l), since the work of Pekeris & Shkoller 
does not explicitly have a small amplitude limitation. TO US the conventional 
idea that in reality nonlinear effects intervene to place a limitation on the 
amplitudes of the disturbance flow remains attractive. TO check this, one should 
ideally attempt to solve the Navier-Stokes equations, but here we shall under- 
take a far less ambitious approach to the problem. We shall represent the dis- 
turbance flow by drastically limited Fourier expansions in the downstream co- 
ordinate but shall solve the resulting equations (numerically) with high accuracy 
to obtain a good representation of the cross-stream structure of the solution. 
I n  particular, we shall show that indeed the nonlinear terms always limit the 
amplitude of the disturbance flow in this approximation. A similar effort has 
recently been made by George & Hellums (1972). They retained two downstream 
harmonics and treated the resulting equations by finite difference methods. Our 
approach differs from theirs chiefly in that we find steady solutions in certain 
Galilean frames whereas they followed the initial evolution in time (cf. also 
Dowell 1969) of solutions seen in the laboratory frame. By finding the steady 
solutions, we are able to map extensively the regions of metastability in the 
parameter space of solutions. 

We recognize, of course, that convergence of the expansion we are using to 
a solution of the Navier-Stokes equations is not guaranteed. However, the 
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practical significance of this kind of approach does seem to be established and 
the rule of thumb that higher terms be small has been our guide. Thus, for 
R < 104, we find that the energy of the second downstream harmonic of the 
disturbance flow is always less than 1 yo of the fundamental. But even at the 
lowest Reynolds numbers the mean velocity profile is markedly distorted, and 
we would not feel justified in makingsimilar expansions in cross-stream harmonics. 
This structure has thus been treated with high precision by finite difference 
methods. 

Having thus attempted to locate the place of the present effort in the context 
of the existing studies of channel flow, we turn in the next section to an explicit 
statement ofthe approximations. Then in 0 3 we outline the numerical procedures 
used, and try to underline the key points that have seemed necessary for finding 
accurate solutions. In  4 we give the results, mainly in graphical form, and finally, 
in $5,  we note some of the conclusions that we may draw and the questions they 
raise. 

2. Approximations 
We consider a flow driven through a channel by a fixed pressure gradient and 

choose the x co-ordinate in the direction of this gradient. The channel walls 
are at z = + 1 and z = - 1 and we use d ,  the half-width, as the unit of length. I n  
this notation the laminar Poiseuille solution is U,( 1 - z2) and we shall adopt U, 
as the unit of velocity; the Reynolds number, which is then a measure of the 
imposed uniform pressure gradient a,p, is given by 

where u is the kinematic viscosity. 
The flows we study consist of a mean velocity U in the x direction plus a dis- 

turbance velocity v which may be described in terms of two scalar functions F 
and G ;  that  is, the total velocity may be written as 

v = 1, U ( Z ,  t )  + V x V x [ ~ , F ( z ,  y, Z, t ) ]  + V x [ ~ , G ( x ,  9, Z, t ) ] ,  (2.2) 

where 1, is a unit vector in the z direction. For the scalar functions F and G we 
take the following decomposition: 

where f k ( x ,  y) is the most general harmonic planform of total wavenumber ak 
such that 

(a:+a;)fk = -.ifk. (2.4) 

I n  addition, we impose the orthonormality condition 
- 
fi f;” = 2sii. 
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(The overbar stands for a spatial average over x and y and the asterisk denotes a 
complex conjugate.) We note that the z components of the disturbance velocity 
and the vorticity are given by m 

k =1 
l , .v  = Re C f k Q , ,  (2.6) 

a- 

l , . V x v  = Re x ay f k Q k .  
k = l  

I n  cases where the disturbance is two-dimensional (depending only on x and z ) ,  
the disturbance stream function is 

M 

Y = a,F = Re C a p ,  fk!2,. 
k = l  

(2.8) 

Substitution of these expansions into the Navier-Stokes equations, followed 
by the usual projections, yields a set of partial differential equations in z and t 
for U and the Q’s and Ws. We shall exhibit these equations only for the cases 
treated here, where the horizontal planforms are restricted to the simple forms 

f ,  = N , p ~ ~ ~ ~ y e - i k a x ,  a: = k2a2+P2,  (2.9) 
where N is the normalization constant appropriate to the horizontal spatia,l 

98 frequencies a and /3. We also apply a Galilean transformation to  a co-ordinate 
frame moving in the positive x direction with a speed c to be specified. The equa- 
tion for U is then 

The equations for the a’s  and the @’s are 

atBkQk+ ika[(aE U )  Qk - ( U  - C )  gkQk] - R-’B$Q2, = {S,), (2.1 1 )  

a,@, - ika( u - C )  CD, - (a, u) n, - ~ - q  Q, = { q . ~  (2.12) 

where 9, = a,---:. (2.13) 

{S,, and {Tk) represent the nonlinear terms which couple the different k com- 
ponents or modes; their general form is intricate and they will be given explicitly 
below for the cases considered here. When a, = 0, and the coupling terms are 
neglected, (2.11) becomes the Orr-Sommerfeld equation. We emphasize that U 
is the mean flow as seen in the laboratory frame, and that hereaft,er the perturba- 
tion velocity is as seen in the frame moving at  speed c .  

We may now list the three main problems whose solutions are to be discussed. 
(I) One-mode problem. Here the disturbance consists of a single (complex) roll 

with its axis aligned in the y direction. This is the simplest truncation which 
couples the disturbance and the mean velocity and for which the disturbance 
flow is two-dimensional. I n  this case 

fl = 2ite-iax 9 a, = a, (2.14) 

equation is ignored and {S,} = 0. This case yields the mean-field equations, the 
which have also been studied by Meksyn & Stuart (1951) and Grohne (1969). 

21-2 
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(11) Two-mode problem. To the transverse roll of problem I we add its first 
overtone in x. Thus we have 

fk = 23e-ikaz, ak = kz, k = 1,2, (2.15) 

and the equations for the W s  are again not needed. The coupling terms take the 
following form: 

(2.16) 

Since the triad coupling terms {S,} are now present, the problem is no longer of 
the mean-field type. This case uses the same truncation as Stuart (1960) and 
Watson (1960), retaining only two downstream Fourier modes. They showed that 
the resulting equations are valid a t  least for small amplitudes. Our goal is to 
study the solutions of these equations at larger amplitudes, though points of 
contact will be made a t  small amplitudes with t,he results of Reynolds & Potter 
(1967), Pekeris & Shkoller (1967, 19693) and Chen & Joseph (1973). 

(111) A three-dimensional example. In  this case we have both x and y structure 
in the disturbance flow: 

fi = 2 cospye-im, a, = (a2 +,&!)a, (2.17) 

and the coupling terms vanish: (8,) = {TI} = 0. This case is again a mean-field 
problem with crossed rolls. The solutions of this three-dimensional analogue of 
case I will be compared with similar ones by Grohne (1969). We emphasize 
that this is the simplest one-mode three-dimensional example; other cases exist 
with self-interactions which may give stronger advective effects. 

I n  $ 4  we shall give detailed results for cases I and I1 and only indicate how 
case I11 differs from these. Tn presenting the results we shall split the Q's and 
a's  into their real and imaginary parts: 

Qk = w,+iFvk, @k = z,+iz,. (2.18) 

Further, we shall use the following functions which are related to they component 
of vorticity in cases I and 11: 

The non-dimensional mass flux will be defined by 

where M = 8 for parabolic flow. 
The energy of the mean flow will be measured by 

(2.10) 

(2.20) 

(2.21) l 5  +' V d z ,  E -  u-ii  s -1 
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where the coefficient is chosen so that E ,  = 1 for parabolic flow. Similarly, the 
energy of the perturbation flow in the frame moving a t  speed c will be measured by 

(2.24) 

and where (u, v, w) are the components of the disturbance flow in the frame moving 
a t  speed c. 

The boundary conditions in all cases are that the Q,,., ( D k ,  azQ, and U all 
vanish on z = 1. Various initial conditions are considered as explained in 3 3. 

(IV) Transport of a passive scalar. A small additional calculation that we have 
performed is that of the transport of a passive scalar T in case I. I n  this case, 
the z component of the perturbation velocity is simply 

w = W,cosax+Rsinax, ( 2 . 2 5 )  

and the scalar is expressed as 

T = F ( z ,  t )  + Ol(z, t )  cos ax + o1(z, t )  sin ax. 

The differential equations for these additional functions are 

(2.26) 

a$ + a,(w,sl + WIOl) = P-1 a p ,  (2.27) 

a t 4 + ~ a Z F  = P-la:e,, (2.28) 

with a similar equation for &. The quantity 

P = u*d/K = (vIK) R (2.29) 

is the PBclet number, when K is the thermal diffusivity. The boundary conditions 
are that T = 0 a t  z = 1 and T = I a t  z = - I ,  while O1 and Q1 both vanish a t  
z = & 1. The quantity of principal interest is the transport of T across the channel 
resulting from the disturbance flow. This is measured by N (the Nusselt number 
if T is temperature) : 

N = -azT+W,O,+WIQl, (2.30) 

where W, and Wl are simply taken from the solution for case I for this calculation. 

3. Numerical method 
This section outlines the numerical procedure used in integrating any of the 

four systems of equations derived in $ 2 .  All of these nonlinear partial differential 
equations, parabolic in classification, with time t and the cross-stream spatial 
co-ordinate z as the independent variables, are solved using finite difference 
representations. 



326 J.-P. Zahn, J .  Toomre, E .  A .  Spiegel and D.  0. Gough 

An accurate spatial resolution can be achieved by finite difference methods 
provided that a stretched spatial mesh in z is used. The increasingly narrow 
boundary-layer structures encountered as R is increased can be resolved by 
defining a new independent variable <(z) ,  for which the M grid points (M is of 
order 300) are evenly spaced, so that the boundary-layer regions near the walls 
z = & 1 each begin to occupy about one-third of the < interval of [ - 1, + 11. All 
spatial derivatives are expressed by second-order-accuracy (local Az definition) 
centred differences conveniently written in the 6 variables. The continuous and 
monotonic transformations between < and z are based upon smoothed cubic 
functions, as illustrated in figure 10. The extent of the cubic stretching is evident 
on realizing that, a t  R = lo4 and a = 1-00, each boundary layer occupies of the 
order of 10 yo of t,he x domain, while a t  R = 108 this value is reduced to 0.5 %. 

Implicit time representations are used in which all differential spatial operators 
are evaluated at the =me two time levels, ranging from a time-centred scheme 
which minimizes numerical diffusion to t,he very stable but diffusive fully implicit 
scheme. Such implicit time methods are required for these high resolution 
stretched spatial grids because the diffusive stability criterion [At < 0*5(Azmi,,)2] 
would otherwise imply prohibitively small time integration steps At. The finite 
difference forms of the boundary conditions for the time-dependent calculations 
were readily implemented, the Neumann conditions on 1% and mk being used to 
infer conditions on Yk and Fk. 

The resulting nonlinear difference equations are solved a t  each time step by 
a Newton-Raphson iteration (cf. Henrici 1962, p. 366) leading to the repeated 
inversion of a large ( M  x M )  block tridiagonal matrix. It should be remarked 
that the tridiagonal structure results from our preference for dealing with 
systems of equations involving second-order spatial differential operators, and 
thus each block in case I is 5 x 5, and in case I1 is 9 x 9. The iterative procedure 
has the advantage that it can also be employed in seeking steady solutions 
directly from the time-independent version of the equations. 

As implied in 3 2, the frame of reference may be chosen to move with the phase 
velocity inherent in these solutions. Such a Galilean transformation is found to  
be crucial in permitting the computation to  proceed efficiently to viscous time 
scales of O(R)  by relaxing the O( 1) time step constraint otherwise dictated by 
wave propagation. A procedure was devised which could update the Galilean 
frame to reflect the possible time variation of the phase velocity c. The in- 
stantaneous phase q5 of the complex function 0, = W, + iw. possesses the time 
derivative at$ = a, arckan (ml/K), which is aAc, where Ac is the phase velocity 
with respect to the current Galilean frame. The increment Ac, determined from 
the present time derivatives of 1% and wl, is then applied to c to a t  least tempo- 
rarily filter out the fast time variation. 

As will be discussed in t,he next section, we found that a selectmion of initial- 
value problems for differing R and a showed complicated time evolutions that 
finally led to steady solutions in an appropriat,e frame moving with the phase 
velocit,y c. Wishing to exploit this property of the solutions, we also sought 
steady solutions by directly solving equations which were time-independent, 
but in which c had to be simultaneously determined. Sequences of such steady 
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solutions were constructed by suitably modifying the fields and the phase velocity 
ofa steady solution a t  a neighbourjng (R, a )  point to provide the initial estimates 
for the Newton-Raphson iteration. Usually five or six iterations sufficed in this 
quadratically convergent scheme, requiring of the order of 3 s  (for case I with 
M = 300) of IBM 360195 machine time to obtain one solution. Most steady solu- 
tion surveys were speeded up by computing only in the half-space [0, + 11, while 
assuming appropriate symmetry conditions for the solutions. 

The imposition of boundary conditions for the time-independent equations 
deserves some comment. The steady problem is a real ordinary differential system 
of order n = 12m + 2 ,  where m is the number of modes retained, and involving 
the phase velocity c, in effect an eigenvalue to be determined. The vanishing of 
the real and imaginary parts of Q k ,  CD, and a, Qk at both boundaries imposes 12m 
boundary conditions, The remaining three boundary conditions are the vanishing 
of U on both boundaries, and an arbitrary condition on the phase of the fluctuating 
fields which serves to constrain the origin of time. However, it is convenient to  
remove c completely from the equations by using U - c rather than U as the 
dependent variable, though c now enters in the boundary conditions. Since c 
is a constant, one can readily integrate the steady version of (2.10), and with 
symmetry considerations then obtain one boundary condition on the x derivative 
of U-c .  The imposition of an arbitrary phase on the complex function Q, 
for instance, supplies the remaining boundary condition. Finally, the value of 
U - c on the boundary yields c. 

4. Results of the calculations 
I n  this section we present the results obtained from numerical solutions of 

(2.10)-(2.13) for the various cases discussed in $ 2 .  We have carried out time- 
dependent calculations for a variety of initial conditions, and found that the 
solutions in all the cases studied either died away completely or became steady 
in some Galilean frame. Accordingly we have concentrated on the steady solutions, 
and most of the results reported in this section refer to steady solutions con- 
structed directly from the time-independent equations. We further choose to  
emphasize cases I and 11, in which the disturbance flows are periodic in x with 
period 2n/a and are independent of y. I n  figure 1 we show the usual stability 
diagram in the R, a plane for these two cases. The shaded section is the familiar 
linear instability region. The two other curves demarcate the regions in which 
the one-mode (case I) and two-mode (case 11) solutions can be sustained. Each 
of these regions consists of both the linear instability strip and a zone in which 
the flows are metastable, or finite amplitude unstable. The critical Reynolds 
numbers for metastability are about half the critical values given by linear 
instability theory; the various values are shown in table I. The one-mode critical 
R and a are in good agreement with those of Grohne (1969). At the critical points 
for metastability, there is already some departure from the Poiseuille profile 
as indicated by U,, the value of the mean velocity a t  mid-channel. (For the 
parabolic profile U, = 1.) The table also gives the mean and fluctuating kinetic 
energy densities E ,  and E [cf. (2.21) and ( 2 . 2 2 ) ]  a t  the critical points. The r.m.s. 
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Critical Case I Case I1 Grohne 
parameters Linear (one mode) (t,wo modes) (one mode) 

R 5772.22 2827.36 2706.65 * 
Iz 5772.22 2543.57 24171.17 2510 
a 1.0206 1.2220 1.3126 1.218 
GO 1~0000 0.899G 0.9 130 * 
C I  uo 0.2640 0.3844 0.401 1 0.393 

Eu 1.0000 0.7841 0.8081 * 
E 0 1.119x 9.220 x 10-3  * 

T A B L E  1. The critical parameters associated n-it,h the ‘nosc’ of the l i w n r  instability strip. 
contrasted with t,hose of the steady finite amplitude solutions of cases I aiid I1 associated 
with the noses of their respective metastability regions. The maximum velocity C‘, at 
inid.chanricl and the phase velocity c ,  as all thc velocity fields, are here normalizcd by C 7 * .  
the maximum \vlocity of the corrcsponding parabolic flo\r. The fluctuating mid mean 
kinetic rncrgies E and E ~ I  are similarly ;caletl by the energy of that  unpertrirhcd Ao\v. 
The usual laboratory Reynolds numbcr R is based on the maxiinrun value of t l i r j  ineaii 
velocity, and thus 12 = L‘,K. The linear pararneters are those reported by Pcskrris & 
Shkolicr (1969a), as further refined by Orszag (1971) .  The asterisks indicate \-allies 1111- 

available in  Grohnc (1969). 



E
 0.

04
 

0.
03

 

0.
07

 

0 
01

 

/
-
 



J . -P .  Zahn, J .  Toomre, E .  A .  Spiegel and D.  0. Gough 

I I 

R = 5 x 10.' 

1 0  2.0 

a 

FIGURE 3. Energies us. wavenumber a a t  R = 5 x 10s for the steady finite amplitude 
solutions for cases I and 11. The lower curves show the disturbance energy E while the 
upper curves show the mean energy Eu. Note that the solutions with larger disturbance 
energies are those with the smaller mean energies. At this R linear theory predicts stability. 
The ticks delineate the upper (UB) and lower (LB) solution branches. As in most of the 
figures, curves marked as I or I1 refer to the appropriate solution properties of cases I or 
I1 respectively. 

total fluctuating velocity scaled by U, is (&E)A; its value is 0.0772 at the critical 
point for case I, which is comparable with the value 0.084 given in the early 
work of Meksyn & Stuart (1951) for the r.m.s. streamwise fluctuating velocity. 

The value of E a t  the critical point for case I1 is essentially that of the fist 
mode or fundamental; the contribution to the energy from the second mode is 
only about 0.14 yo. I n  spite of the relatively small amplitude of the second mode, 
the critical curves for the one- and two-mode cases are somewhat different a t  the 
lowest a. The change is such that the lower part of the two-mode critical ourve 
actually joins the corresponding branch of the linear neutral curve, while the 
one-mode metastability region entirely surrounds the linear instability domain. 

Within the region of metastability computed in case I it was always possible to 
find two steady finite amplitude solutions. I n  the linear region only a single steady 
finite amplitude solution was realized. These results for case I are illustrated 
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a 

FIGURE 4. The same as figure 3, but for R = lo4. The arrows show the limiting wave- 
numbers a between which linear theory predicts instability. The case I and T I  solutions 
are markedly different near their smaller a bifurcation point with the zero disturbance 
amplitude (parabolic profile) solution, here coincident with the arrows on the left. The 
case I LB solutions extend toward subcritical wavenumbers, while those of case I1 are U B  
solutions which go towards larger a and thus remain supercritical. In contrast, a t  the 
position indicated by the arrows on the right, cases I and I1 bifurcate as rather similar LB 
solutions towards subcritical a. 

in figure 2,  which shows the fluctuating energy E as a function of R and a. 
The shaded linear strip of figure 1 is indicated in the E = 0 plane; the extended 
range of R in this figure shows the broadening in a of the metastability region 
with increasing R. 

For the purposes of comparing the one- and two-mode cases we present in 
figures 3,4 and 5 three slices ofthe solution surface at fixed R, as well as analogous 
plots with the mean energy E,  in place of E .  For comparison, the corresponding 
sections of the one- and two-mode energy surfaces are shown. The tick marks 
indicate the energies a t  the limits of the metastability regions. These marks 
divide the individual slices of the energy surfaces into two branches, the upper 
branches ( U B )  and lower branches (LB), which possess markedly dissimilar 
stability characteristics. 
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The difference between the stability characteristics of the UB and LB solu- 
tions appeared strikingly in the time-dependent solutions. For a variety of 
initial conditions these always evolved to  UB solutions, while LB solutions 
could be found only by solving the steady equations. However, various stability 
tests were also applied. In  addition to the conventional procedure of adding 
various small perturbations to all the fields, the stability of the steady solutions 
was studied as follows. A given steady solution was perturbed by multiplying 
the disturbance velocities by factors ranging from 0.9 to 1-1 while leaving the 
mean profile unchanged. This modified solution was taken as an initial condition 
for solving the time-dependent equations. All the UB solutions in cases I and 
I1 that were so perturbed returned to their original states. However, they did 
this by following extremely tortuous routes, oscillating, varying their phase 
velocities and developing internal boundary layers. As a result, adequate spatial 
and temporal resolution was needed to follow the evolution, and failure to 
provide this caused the solutions to grow without bound. Because of these com- 
plexities the stability studies were carried out only for R 5 105. Perturbations 
of the LB solutions which represented an increase in amplitude by even as little 
as 2 yo resulted in a similarly complex behaviour but with the end result that the 
solutions went to the upper branch. Adecrease in the amplitude of an LB solution 
led to  a temporal decay with the disturbance flow dying away completely. 

Such calculations do not provide full stability information since the perturba- 
tions have the same planform as the original solution. However, they do in- 
dicate rather clearly that the UB solution is preferred in cases of non-uniqueness. 
Moreover, these studies give an indication of the perturbation amplitude necessary 
t o  drive the flow from the parabolic form to the states discussed here. I f a  perturba- 
tion on the parabolic flow has enough energy to  raise it to the lower branch of the 
energy surface, i t  can proceed from there to become finally a finite amplitude 
steady disturbance flow on the upper branch of the surface. 

These stability calculations of the UB and LB solutions are consistent wit,h 
the analytic predictions by Chen & Joseph (1973) that a finite amplitude solution 
which bifurcates from the zero amplitudesolution is unstable to small disturbances 
if it lies outside the linear loop (and thus subcritical), and stable if inside (super- 
critical). The calculations were performed before we became aware of their work. 
Chen & Joseph further conjecture that the flow would snap through such un- 
stable solutions towards ‘turbulent solutions’ with a larger norm for their 
energy. The present calculations in fact explicitly show that if an LB solution 
is perturbed in a manner increasing the disturbance amplitude, this solution 
evolves toward a stable higher energy UB solution. Our results emphasize that 
a threshold energy (coincident with that of the LB solution) must be reached 
before a UB solution can be attained, though these results may be rather 
specialized owing to the simple one- and two-mode downstream structures 
studied. 

One difference between figures 3 and 4 is that the former, a t  R = 5 x 103, 
illustrates a subcritical R, in the sense of linear theory, while the latter, a t  
R = 104, shows how the energy surface is related to the linear stability curve a t  
supercritical R. The arrows in figure 4 delimit the linear instability band, and 
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FIGURE 5 .  The same as figures 3 and 4, but at R = los. Note that the plotted values 
show E for case I1 multiplied by a factor 4 and that cases I and I1 give disparate solutions 
for this R. 

as expected, the energy surfaces join its edges at  E = 0. Thus a t  R = lo4 the band 
0.800 < a < 1.095 is linearly unstable. The bands in which nonlinear solutions 
may be sustained are 0.698 6 a 6 1.633 for one mode and 0.800 6 a 6 1.615 
for two modes. It is perhaps of interest to contrast the latter with the a band 
0.753 < a < 0-930 in which Pekeris & Shkoller (1967) find that nonlinear terms 
are stabilizing on the basis of small amplitude two-mode calculations. Figure 4 
also shows that the one-mode solutions possess a narrow metastability band 
for a below the linear neutral curve, whereas the two-mode solutions do not. 
The behaviour of the two-mode energy surface near the neutral curve is essen- 
tially as predicted by Pekeris & Shkoller (1969b) and Chen & Joseph (1973). 

At the Reynolds numbers for figures 3 and 4,  the harmonic second mode in 
ease I1 continues to  contribute only a small part of the disturbance energy. As R 
increases, the relative amplitude of the second mode grows so that a t  R N lo5 
the second mode in case I1 has energy about one-third that of the fundamental, 
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R 

FIGURE 6. Showing the disturbance energy E and the mean energy E v  as functions of R 
for case I (one mode) at two fixed waveuumbers a. The line a = 1.00 in the R,  a plane 
cuts through the region of linear instability (cf. figure 2), while the a = 1.25 line is outside 
this region. The ticks again delineate the upper ( U B )  and lower (LB)  solution branches. 

and the one- and two-mode solutions differ markedly. These differences are 
illustrated in figure 5. What is most remarkable in figure 5 is the plot of E us. a 
for the two-mode solutions. The locus of steady solutions is convoluted and a t  
certain a's there can be as many as four solutions. One might have thought that 
as higher R values are approached and more modes are needed it would be the 
lower approximations that develop peculiarities. Instead the one-mode solution, 
like the first term in an asymptotic sequence, keeps its air of plausibility, while 
t,he two-mode approximation behaves strangely. 

Having discussed the a variation of the energies, we now turn to their variation 
with Reynolds number for fixed a. Figure 6 shows E and E ,  for case I as func- 
tions of R for a = 1.00 and 1.25, the former value lying within the linear stability 
region, the latter always outside it. I n  the region of R = 106 we have E - R-f 
and E ,  - R-) as nearly as can be judged from these numerical results. Note 
also that for R 2 lo6 the disturbance flow has more energy than the mean flow. 
The lower branch of the E curve for a = 1.25 was terminated a t  R = lo4 to 
simplify the diagram. The slice a = 1.25 was chosen for display since i t  both 
emerges near the nose of our one-mode solution surface (see figure 1) and also 
approximately minimizes the mean energy E ,  over most of the R domain 
displayed. 

Figures 7 ( a )  and ( b )  present the case I1 results for energy variation with R 
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FIGURE 9. Illustrating the maximum mean velocity U ,  and phase velocity c &s functions 
of 01 at R = 104 for cases I and 11. The arrowheads mark the edges of the linear instability 
strip. The energies of these solutions are shown in figure 4. 

for the wavenumbers a = 1.00 and a = 1-25 as separate panels, and distinguish 
the perturbation energy contributions from the first and second modes as Ewl 
and Ew2. As for the one-mode case, the curve for a = 1.25 nearly slices through 
the nose of the solution surface, and approximately minimizes E,. We see tha,t 
the value of R a t  which the two modes have comparable energies coincides with t,he 
point a t  which the complexities seen in figure 5 for the two-mode case begin. 

Though cases I and I1 differ in detail as described, their gross properties remain 
remarkably close, as is illustrated in figure 8. The average values of the mean 
velocity given by the steady solutions of cases I and I1 are the principal features 
of figure 8; these are the non-dimensional mass fluxes M as defined by (2.20). For 
case I (one mode), the mass flux in the range lo5 < R < lo7 is well fitted by 
M - R-+, which is consistent with the previous result, E ,  N R-4. I n  the same 
figure the points represent experimental mass fluxes, estimated from the data 
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FIGURE 10. Illustrating some of the fields of the steady one-mode (case I) solution a t  
R = lo4 and cc = 1.00. (a )  shows the real (W,) and imaginary (W,) parts of the Fourier 
amplitude of the z component of the disturbance velocity in terms of the stretched variable 
E. (6) shows the corresponding parts of the y component of the disturbance vorticity. 
(c) shows the mean velocity U (in the laboratory frame) and its z derivative a,U; also 
shown there is the stretching function ~ ( 6 ) .  (d) repeats the mean velocity and its derivative 
as functions of the unstretched co-ordinate z. The arrowheads indicate the positions a t  
which the phase velocity equals the mean velocity. The plot of a, U facilitates locating 
the inflexion points of the mean velocity profile. The normalization factors are 

W! = 1.07 x 10-1, $0, = 7.38 x 10-4, Yt  = 11.13, Y ;  = 9.76 and U ,  = 0.562. 
- 

This U B  solution has E,, = 3.51 x E u  = 0.307, M = 0.373 and c / U ,  = 0.409. 

available and expressed in terms of the present variables; the circles represent 
Laufer's (1951) data while the squares are those of Comte-Bellot (1965). The 
points fit fairly well a law like M N R-8, which does not agree with the results 
obtained here. Of course, in those laboratory experiments the flow was turbulent 
while the solutions we are attempting to approximate are laminar; hence the 
disparity is not surprising. (It is interesting to note that, if we require that in 
fully turbulent flow the dimensional mass flux be independent of viscosity, the 
R-3 law results.) In figure 8 we also show as functions of R the mean velocity U, 
a t  mid-channel as well as the ratio of the phase velocity c to U, for the steady 
solutions of case I. The ticks on the various curves divide the U B  from the LB 
solutions. 

Figure 9 shows c and U, as functions of a for R = 104. The value of U, varies 
very much in the way the mean kinetic energy E ,  does (see figure a ) ,  indicating 
that the form of the mean velocity profile is roughly similar for the whole range 
of a. Perhaps more interesting is the complicated variation of c, the velocity of 
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FIGURE 11.  Similar to figure 10 at R = 104 and a = 1.00, but for the two-mode (case 11) 
solution. However, (a) here shows the W’s for only the fist mode, while (b)  shows those 
for the second mode. The vorticity is %ot included here as it was in figure 10, The normaliza- 
tion factors are W: = 9.36 x 10-2, W! = 7.77 x 
and U ,  = 0.652. This UB solution has E,, = 2.61 x E,, = 3.00 x 10-4, E v  = 0.400, 
M = 0.423 and cIU, = 0.387. 

W; = 2.34 x lo-*, W,O = 1.23 x 

the reference system in which the solution appears steady, which we have also 
called a ‘phase velocity’. The origin of this latter term, apart from its evident 
analogy with the phase velocity of linear theory, is explained in § 3. For the 
one-mode case the meaning is clear since the mode is complex and has a phase 
which is constant in some particular Galilean frame. For the two-mode case, 
the two modes have the same phase velocity for the solutions which we have 
characterized as steady. This common velocity c is shown in figure 9. 

We note that c is systematically greater for the unstable LB solutions than 
for the U B  solutions, but we are unable to see from this any reason €or the 
difference in stability properties of the two solutions. We are also tempted to ask 
whether dclda has any physical significance, as in linear theory, but we see 
no real reason why it  should. Nevertheless, it, may be worthwhile to remark that 
a t  the transition between the LB and U B  solutions dclda is positive on the U B  
side. 

Let us now turn to some prototype solutions. Following a standard practice, 
we illustrate the results for R = 104 and a = 1-00. Figure lO(a) shows the solu- 
tions for 1% and ml a t  these values of R and u. For this plot W, and have been 
divided by their maximum values, which are given in the caption. The forms of 
these fields are similar to those of the corresponding Orr-Sommerfeld eigen- 
functions; however the ratio of the amplitudes of W, and ml is even less (by a 
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FIGURE 12. The mean velocity U profiles and their derivatives 8, U as functions of the 
unstretched variable z for various R a t  a = 1-25 for the one-mode case I. The U profiles are 
normalized by U,, the maximum mean velocity at mid-channel, and possess mass fluxes M .  

R uo M 
_-- 104 0.4970 0.3332 

106 0.0948 0.0700 
__-_  1 0s 0.0207 0.0163 

factor of 3) than in the linear theory. This means that Reynolds stresses estimated 
from the present studies are generally less than those computed using Orr- 
Sommerfeld eigenfunctions as basis functions. (We chose ml(0) = 0 for these 
displays so that the phases of our functions are the same as the usual linear ones.) 
The vorticity amplitudes & and PI associated with these velocity amplitudes 
W, and m, [cf. (2.19)] are shown in figure lO(b) ;  their magnitudes are listed in the 
caption and the two are comparable. I n  this figure, as in figures 11 and 14, the 
critical points a t  which U = c are indicated by arrowheads. 

We emphasize that the abscissa variable used in figures lofa) and ( b )  is not z 
but a stretched co-ordinate ( (cf. 5 3) whose relation to z is shown in figure lO(c). 
The use of ( as the independent variable greatly improves computational 
accuracy and further helps in showing the structure of the plotted solutions. 
Also shown in figure 10 (c) are the mean velocity profile Ufz) and its z derivative 
aaU. Figure 10(d)  repeats the functions of figure lO(c) but shows them plotted 
as functions of z to give a better idea of the distorting effect of stretched variables. 
The U profile in this one-mode example possesses inflexion points, with sign 
changes in 8; U ,  near the critical points. This feature is present in all of the case I 
U B  solutions studied, with the exception of solutions in the immediate vicinity 
of the metastability nose. Thus the solutions at  R = 3 x lo3 in figure 2 have no 
inflexion points, while the one-mode U B  solutions for R 2 5 x 103, also shown 

22-2 
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in figures 3, 4 and 5, all have inflexion points in their tJ profiles. Figure 1 0 ( d )  
also gives some idea of the distribution of the off-diagonal component of Reynolds 
stress. As an integral of (2.10) shows, in steady solutions the mean momentum 
transport is a linear function of z, and thus these off-diagonal stresses are pro- 
portional to a, U- 22, or to the deviation of the a, U curve in figure 10 ( d )  from 
a line connecting the upper left to the lower right corners of the panel. 

I n  figure 1 1  we show comparable fields for the t'wo-mode case. The chief 
difference between this figure and figure 10 is that we do not display the vorticity 
functions but instead use figure 11 ( b )  to exhibit r& and w2, the velocity amplitude 
functions of the second mode. Compared with Wl these are small quantities, 
but tc is much larger than ITTI. This fact plays a role in determining the contribu- 
tions of the two modes to the off-diagonal component of the Reynolds stress. 
These quantities are proportional to the Wronskians of W, and 
and P2. At the value R = 104 corresponding to figure 11, the second mode con- 
tributes 5 yo of the Reynolds stress as compared with 2 yo a t  the metastability 
nose. The U profile for this case I1 solution [figure 11  ( c ) ]  has inflexion points, 
a feature common to a t  least all the two-mode UB solutions a t  R = lo4. 

The effect on the mean velocity profile of increasing R is indicated in figure 12, 
which displays U(z)/U, and its z derivative for R = lo4, lo6 and lo8 and a = 1.25 
for case I. A glance below the figure a t  the values of U, shows how the flattening 
of the profiles increases with R even for this simple flow. 

Another impression of the flow is given by the streamlines. I n  figure 13 we 
show the total stream function 

and of 

[cf. (2.8)] computed in the frame of steady motion for case I with R = 104 and 
a = 1-00. The most striking aspect is the meandering of the central flow (though 
we note also that the stretched co-ordinate is used). At the bends in the flow we 
find cat's-eye patterns (cf. Bergeron 1970; Stuart 1971), like the recirculating 
regions of both linear and small amplitude theories. 

Having thus summarized cases I and 11, which are approximations to two- 
dimensional motion, let us turn briefly to  case I11 and three-dimensional motion. 
We have only explored portions of the energy surfaces for such cases and figure 13 
gives a sample. It shows the intersections of the fluctuating energy surfaces of 
case I11 with the curve aR = 104. The different sections are for the indicated 
values of the wavenumber ratio Bla = /3(a2+/12)-h, and they clearly show a 
stabilizing effect of three-dimensionality. Such a trend was also noted by Grohne 
(1969). A related effect occurs in linear theory and is described by Squire's 
theorem; this suggests that comparison of different solutions for fixed Ra is most 
revealing for the present consideration. 

The solutions for a typical example of case I11 are shown in figure 15, which 
is closely analogous to figure 10. The parameters are R = 1.02 x 104, a = 0.98 
and p = 0-20. Figure 15(b) however differs from figure 10(b) in that it shows the 
real and imaginary parts of the z component of the vorticity amplitude function, 
2, and 2,. The complicated z structure of the disturbance fields may be part of 
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FIGURE 13. Showing streamlines for the two-dimensional case I flow detailed in figure 10. 
The same stretched cross-stream co-ordinate 6 is used here, but the downstream co- 
ordinate z is unstretched. The contours are drawn a t  equal intervals of the total stream 
function, ranging from a maximum of 0.2324 to a minimum of - 0.2324. 
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FIGURE 14. The disturbance energy E as a function of the total ‘horizontal’ wavenumber 
a for aR = 104,  where u is the downstream wavenumber [ef. (2.17)]. When P/a = 0, this 
reduces to the two-dimensional flow of case I. 
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FIGURE 15. Fields for a three-dimensional solution (case 111) with one mode at aR = 104, 
a = 1.00, B = 0.20. This is like figure 10 except that here_(b) gives the z component of 
Lorticity. The normalization factors are W: = 6.72 x lo-*, W: = 5.55 X 2; = 0.721, 
2: = 0.650 and U ,  = 0.841. This solution has Eivl = 1.04 x 
Ev = 0.670, M = 0.543 and c / U ,  = 0.343. 

E,, = 5.35 x 

U 

FIGURE 16. The cross-stream transport of a passive scalar quantity for the flow of case I 
at a = 1.25 and for various R.  If the quantity were temperature, N would be the Nusselt 
number and u the Prandtl number [cf. (2.29) and (2.30)]. 
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the cause of the stabilization in three dimensions. We stress that the three- 
dimensional structures treated here are special and we cannot conclude that 
three-dimensionality is always stabilizing. 

Finally we indicate in figure 16 how a passive scalar is transported across the 
channel by the one-mode velocity fields of case I .  I n  figure 16 we plot N for 
various R, as a function of (T = P/R  [cf. (2.29)]. If the convected quantity is 
temperature, N is the Nusselt number and (T is the Prandtl number. I n  all 
cases shown, a! = 1.25. The tendency of N to decrease with decreasing (T and 
the insensitivity of N to u at large (T are both familiar in thermal convection. The 
slow increase of N with R at  large R and v results partly from the fact that a t  
a fixed a: we move out of the main part of t,he metastable region as R increases. 
Moreover, the Nusselt number should vary approximately like the square root 
of the disturbance energy E,  which in turn varies like R-* a t  the values considered 
here. I n  particular, these curves are well represented by N - 1  - (r2R$ for 
(t2R% < 0-1 .  

5. Conclusions 
The equations solved in this work are only an approximation to the Navier- 

Stokes equations. We nevertheless believe that the solutions obtained corre- 
spond qualitatively to solutions of the Navier-Stokes equations. For R 5 lo4 
the structure of solutions in parameter space is entirely in accord with what one 
would expect to find on the basis of small amplitude theory. Moreover, in the 
metastable regime the small amplitude (or LB) solutions are unstable in agree- 
ment with the findings of Chen & Joseph (1973). Though we cannot make a 
conclusive statement about the stability of the large amplitude ( U B )  solutions, 
we certainly could not permanently dislodge them with the perturbations we 
could make to them. If the U B  solutions of these calculations are indeed stable 
at  the lower Reynolds numbers, their failure to appear in experiments is sur- 
prising, and apparently a t  variance with Landau’s (1944) view of the transition 
t o  t,urbulence. 

Landau suggested that, following an instability of the laminar state, a dis- 
turbance flow develops to the point where the nonlinear terms limit its amplitude 
as described by (1 .1) .  As the degree of instability is increased, this solution in 
turn becomes unstable, and turbulence grows out of a sequence of such in- 
stabilities. Since the solutions of (1 .1)  have been found to be unstable, the sugges- 
tion is not correct in detail. The U B  solutions might have provided t,he missing 
ingredient for Landau’s picture, but this is not what experiments show in channel 
flow. There does not seem to be anything that could be ta,ken to be analogues of 
Benard cells, to take a case where Landau’s ideas seem to have more relevance. 
It would be of interest to know why these different kinds of transition to 
turbulence exist. 

It may well be that the potential analogues to cellular motion, the U B  soh-  
tions, are always unstable. Alternatively, such solutions may be precursors to 
bursts as in Landahl’s (1972) view. Possibly, different precursor solutions exist 
and suppress the UB solutions found here. A contender for this role is the kind 
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of solution discussed by Stewartson & Stuart (1971) which, in effect, allows for 
spatial modulation of the downstream wavenumber. I n  any case, the work re- 
ported here seems to make the contrast between the transitions to channel flow 
turbulence and to (say) thermal turbulence more graphic. 
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